Webmaster: NOTICE - I.E. Users: TOP menu for best navigation and NO ads; left menu for links description
Sources of the Antidotes: 999, 888, 777
1. 999: Supreme Antidote 1.1 Vaccine on basis of the Beast (666) 1.2 Antigen integrated into the Anti-Beast (999) 2. Effective Numbers
1 999: Supreme Antidote
Such as it comes to light from the properties exposed below, the Beast (666) contains the principle of the "vaccine" against his own poison,
whereas the Anti-Beast (999) generates "the antidote" useful to your full protection.
Because of the omnipotence and the omnipresence of God (999), the Devil (666) always seems under control; what should be enough to reassure all and each one.
1.1 Vaccine on basis of the Beast (666)
The Beast (666), combined with any isomorphous trinitary structure gives you the antidote necessary for your full protection ...
Any vaccine is made of poison!!! See our special page on the properties of the Isomorphous Triplets
NOTE: 666 ⇒ 6 + 6 + 6 = 18 ⇒ 1 + 8 = 9
|
666 x 111 = 073926 |
⇒ 073 + 926 = 999 |
666 x 222 = 147852 |
⇒ 147 + 852 = 999 |
666 x 333 = 221778 |
⇒ 221 + 778 = 999 |
666 x 444 = 295704 |
⇒ 295 + 704 = 999 |
666 x 555 = 369630 |
⇒ 369 + 630 = 999 |
666 x 666 = 443556 |
⇒ 443 + 556 = 999 |
666 x 777 = 517482 |
⇒ 517 + 482 = 999 |
666 x 888 = 591408 |
⇒ 591 + 408 = 999 |
666 x 999 = 665334 |
⇒ 665 + 334 = 999 |
1.2 Antigen integrated into the Anti-Beast (999)
The Anti-Beast (999), combined with any isomorphous trinitary structure gives you the Antigen useful to your full protection ... According to the Holy Bible, you are well made on the image of God!!! Always and everywhere, your "Guardian Angel" goes on guard. imply follow the Trinity and you will be protected and saved. See our special page on the properties of the Isomorphous Triplets
NOTE: 999 ⇒ 9 + 9 + 9 = 27 ⇒ 2 + 7 = 9
|
999 x 111 = 110889 |
⇒ 110 + 889 = 999 |
999 x 222 = 221778 |
⇒ 221 + 778 = 999 |
999 x 333 = 332667 |
⇒ 332 + 667 = 999 |
999 x 444 = 443556 |
⇒ 443 + 556 = 999 |
999 x 555 = 554445 |
⇒ 554 + 445 = 999 |
999 x 666 = 665334 |
⇒ 665 + 334 = 999 |
999 x 777 = 776223 |
⇒ 776 + 223 = 999 |
999 x 888 = 887112 |
⇒ 887 + 112 = 999 |
999 x 999 = 998001 |
⇒ 998 + 001 = 999 |
2 Effective Numbers
The effective numbers are generally multiples of 7 and or 13.
(7; 13; 14; 26; 28; 35; 39; 42; 52; 56; 63; 65; 91 etc.)
2.1 Number 7 and 999
All perfect products of the seventh [N x (1/7), N=natural entirety] - except for the multiples of 7 - generate each time the Anti-Beast (999), with three (3) specific iterative triplets:
[with a period of six (6)! ... Triple 6=the Beast (666); 142857 - 285714 - 428571 - 571428 - 714285 - 857142]
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
285 714 ⇒ 2+8+5=15 7+1+4=12 15+12=27
⇒ 2+7=9
428 571 ⇒ 4+2+8=14 5+7+1=13 14+13=27
⇒ 2+7=9
NOTE: Even the inverses multiple of 7 generate the Anti-Beast or the numeric code of Jesus (888),
if the numerical root of N (i.e. the sum of its figures) is different from 3 and 6.
Examples:
28 = 7x4 2+8=10 ⇒ 1+0=1 (root#3 and 6) ⇒ 1/28=0.035714285... ⇒ 571+428=999
63 = 7x9 6+3=9 (root#3 and 6) ⇒ 1/63=0.00158730158730 ... ⇒ 158+730=888
|
1/7=0.142857 ... |
⇒ 142 + 857 = 999 |
29/7=4.142857 ... |
⇒ 142 + 857 = 999 |
2/7=0.285714 ... |
⇒ 285 + 714 = 999 |
30/7=4.285714 ... |
⇒ 285 + 714 = 999 |
3/7=0.428571 ... |
⇒ 428 + 571 = 999 |
... |
... |
4/7=0.571428 ... |
⇒ 571 + 428 = 999 |
100/7=14.285714 ... |
⇒ 285 + 714 = 999 |
5/7=0.714285 ... |
⇒ 714 + 285 = 999 |
101/7=14.428571 ... |
⇒ 428 + 571 = 999 |
6/7=0.857142 ... |
⇒ 857 + 142 = 999 |
... |
... |
8/7=1.142857 ... |
⇒ 142 + 857 = 999 |
1000/7=142.857142 ... |
⇒ 857 + 142 = 999 |
9/7=1.285714 ... |
⇒ 285 + 714 = 999 |
... |
... |
10/7=1.428571 ... |
⇒ 428 + 571 = 999 |
1111/7=158.714285 ... |
⇒ 714 + 285 = 999 |
11/7=1.571428 ... |
⇒ 571 + 428 = 999 |
... |
... |
... |
... |
11111/7=1587.285714 ... |
⇒ 285 + 714 = 999 |
19/7=2.714285 ... |
⇒ 714 + 285 = 999 |
... |
... |
20/7=2.857142 ... |
⇒ 857 + 142 = 999 |
1111111/7=158730.142857 ... |
⇒ 142 + 857 = 999 |
... |
... |
... |
... |
Other properties of number 7
1 x 7 + 3 |
= |
10 |
14 x 7 + 2 |
= |
100 |
142 x 7 + 6 |
= |
1000 |
1428 x 7 + 4 |
= |
10000 |
14285 x 7 + 5 |
= |
100000 |
142857 x 7 + 1 |
= |
1000000 |
1428571 x 7 + 3 |
= |
10000000 |
14285714 x 7 + 2 |
= |
100000000 |
142857142 x 7 + 6 |
= |
1000000000 |
1428571428 x 7 + 4 |
= |
10000000000 |
14285714285 x 7 + 5 |
= |
100000000000 |
142857142857 x 7 + 1 |
= |
1000000000000 |
1428571428571 x 7 + 3 |
= |
10000000000000 |
...
|
1/7=13/91=111/777=0.142857 142857 142857 ... ⇒ 142+857=999 428+571=999 285+714=999
69/91 = 0.758241 758241 758241 ... ⇒ 758+241=999 824+175=999 582+417=999
NOTES: The order of the double iterative triplet (142 857) is quite simply reversed (758 241)
91 = 13 x 7 69 = 3 x 23
Number 7 is used 54 times in the Apocalyse:
54 ⇒ 5+4=9
54/7=7.7 142857 142 857 142857 ... ⇒ 142+857=999
9/7=1.2 857142 857142 857142 ... ⇒ 142+857=999
7/9=0.777 777 777 ...
666/777 = 6/7 = 78/91=0.857142 857142 85714 ... 666/999 = 2/3 = 18/27 = 0.666 666 666 ...
In the double triplets 142857 and 857142 the digits 3 and 6 are the two only lacks
in the numerical sequence: failure of the Beast or triple 6 (666);
142857 x 7 = 999 999 857142 x 7 = 5999994 + 5 = 5 999 999
758241 x 91 = 68999931 + 68 = 68 999 999
|
|
| |
2.2 Number 11 and 999
All the "products" of eleventh (1/11) generate the Anti-Beast (999), with five (5) specific sums,
except of course for the multiples of 11
NOTES:
1 + 9 + 1 = 11 = 1 + 32 + 1
090 909 ⇒ 0+9+0 = 9 9+0+9=18 9 + 18=27
⇒ 2+7=9
181 818 ⇒ 1+8+1=10 8+1+8=17 10+17=27
⇒ 2+7=9
272 727 ⇒ 2+7+2=11 7+2+7=16 11+16=27
⇒ 2+7=9
363 636 ⇒ 3+6+3=12 6+3+6=15 12+15=27
⇒ 2+7=9
454 545 ⇒ 4+5+4=13 5+4+5=14 13+14=27
⇒ 2+7=9
|
1/11=0.090909 ... |
⇒ 090 + 909 = 999 |
... |
... |
2/11=0.181818 ... |
⇒ 181 + 818 = 999 |
56/11= 5.090909 ... |
⇒ 090 + 909 = 999 |
3/11=0.272727 ... |
⇒ 272 + 727 = 999 |
57/11=5.181818 ... |
⇒ 181 + 818 = 999 |
4/11=0.363636 ... |
⇒ 363 + 636 = 999 |
58/11=5.272727 ... |
⇒ 272 + 727 = 999 |
5/11=0.454545 ... |
⇒ 454 + 545 = 999 |
59/11=5.363636 ... |
⇒ 363 + 636 = 999 |
6/11=0.545454 ... |
⇒ 545 + 454 = 999 |
60/11=5.454545 ... |
⇒ 454 + 545 = 999 |
7/11=0.636363 ... |
⇒ 636 + 363 = 999 |
61/11=5.545454 ... |
⇒ 545 + 454 = 999 |
8/11=0.727272 ... |
⇒ 727 + 272 = 999 |
62/11=5.636363 ... |
⇒ 636 + 363 = 999 |
9/11=0.818181 ... |
⇒ 818 + 181 = 999 |
63/11=5.727272 ... |
⇒ 727 + 272 = 999 |
10/11=0.909090 ... |
⇒ 909 + 090 = 999 |
64/11=5.818181 ... |
⇒ 818 + 181 = 999 |
12/11=1.090909 ... |
⇒ 090 + 909 = 999 |
65/11=5.909090 ... |
⇒ 909 + 090 = 999 |
13/11=1.181818 ... |
⇒ 181 + 818 = 999 |
67/11=6.090909 ... |
⇒ 090 + 909 = 999 |
14/11=1.272727 ... |
⇒ 272 + 727 = 999 |
68/11=6.181818 ... |
⇒ 181 + 818 = 999 |
15/11=1.363636 ... |
⇒ 363 + 636 = 999 |
69/11=6.272727 ... |
⇒ 272 + 727 = 999 |
16/11=1.454545 ... |
⇒ 454 + 545 = 999 |
70/11=6.363636 ... |
⇒ 363 + 636 = 999 |
17/11=1.545454 ... |
⇒ 545 + 454 = 999 |
71/11=6.454545 ... |
⇒ 454 + 545 = 999 |
18/11=1.636363 ... |
⇒ 636 + 363 = 999 |
72/11=6.545454 ... |
⇒ 545 + 454 = 999 |
19/11=1.727272 ... |
⇒ 727 + 272 = 999 |
73/11=6.636363 ... |
⇒ 636 + 363 = 999 |
20/11=1.818181 ... |
⇒ 818 + 181 = 999 |
74/11=6.727272 ... |
⇒ 727 + 272 = 999 |
21/11=1.909090 ... |
⇒ 909 + 090 = 999 |
... |
... |
|
| |
2.3 Number 13 and 999
All the "products" of thirteenth (1/13) generate the Anti-Beast (999), with six (6) specific sums;
except of course for the multiples of 13
During factorization by (1/13), there is recurrence of double triplets in the decimal parts
with a period of 12. On each half-period, the order of the double triplet is reversed,
however with maintenance of the order of digits at the interior of each particular triplet.
NOTES:
13 = Numerical Value of J.-C. (Jesus-Christ), in the logical alphanumeric encoding
(C=3 et J=10)
13 = "Mark of time"; one year = 52 weeks = 13 x 4 weeks
769 230 ⇒ 7+6+9 = 22 2+3+0=5 22 + 5=27
⇒ 2+7=9
153 846 ⇒ 1+5+3 = 9 8+4+6=18 9 + 18=27
⇒ 2+7=9
076 923 ⇒ 0+7+6=13 9+2+3=14 13+14=27
⇒ 2+7=9
307 692 ⇒ 3+0+7=10 6+9+2=17 10+17=27
⇒ 2+7=9
384 615 ⇒ 3+8+4=15 6+1+5=12 15+12=27
⇒ 2+7=9
461 538 ⇒ 4+6+1=11 5+3+8=16 11+16=27
⇒ 2+7=9
Each decimal part allows to generate the Anti-Beast (999) in three (3) different ways,
by addition of 2 triplets of digits taken in the order, that is to say from the 1st decimal era,
or after the second and third decimals.
Example: 8/13 = 0.615384615384 ... ⇒ 615+384=999 153+846=999 538+461=999
In addition, Gerard Colombat announces:
«...the appearances known as " mariales" of Fatima in Portugal,
who had taken place each 13 of the month, over a period of 153 days between May 13 and
October 13, 1917. In addition, the attack in Rome against Jean-Paul II having taken place on May 13, 1981...»
In the reversed numerology on basis 36, " The Fatima City" is worth 666.
|
1/13=0.0769230 ... |
⇒ 769 + 230 = 999 |
... |
... |
2/13=0.153846 ... |
⇒ 153 + 846 = 999 |
56/13= 4.307692 ... |
⇒ 307 + 692 = 999 |
3/13=0.230769 ... |
⇒ 230 + 769 = 999 |
57/13=4.384615 ... |
⇒ 384 + 615 = 999 |
4/13=0.307692 ... |
⇒ 307 + 692 = 999 |
58/13=4.461538 ... |
⇒ 461 + 538 = 999 |
5/13=0.384615 ... |
⇒ 384 + 615 = 999 |
59/13=4.538461 ... |
⇒ 538 + 461 = 999 |
6/13=0.461538 ... |
⇒ 461 + 538 = 999 |
60/13=4.615384 ... |
⇒ 615 + 384 = 999 |
7/13=0.538461 ... |
⇒ 538 + 461 = 999 |
61/13=4.692307 ... |
⇒ 692 + 307 = 999 |
8/13=0.615384 ... |
⇒ 615 + 384 = 999 |
62/13=4.769230 ... |
⇒ 769 + 230 = 999 |
9/13=0.692307 ... |
⇒ 692 + 307 = 999 |
63/13=4.846153 ... |
⇒ 846 + 153 = 999 |
10/13=0.769230 ... |
⇒ 769 + 230 = 999 |
64/13=4.923076 ... |
⇒ 923 + 076 = 999 |
12/13=0.923076 ... |
⇒ 923 + 076 = 999 |
66/13=5.076923 ... |
⇒ 076 + 923 = 999 |
14/13=1.076923 ... |
⇒ 076 + 923 = 999 |
67/13=5.153846 ... |
⇒ 153 + 846 = 999 |
15/13=1.153846 ... |
⇒ 153 + 846 = 999 |
68/13=5.230769 ... |
⇒ 230 + 769 = 999 |
16/13=1.230769 ... |
⇒ 230 + 769 = 999 |
69/13=5.307692 ... |
⇒ 307 + 692 = 999 |
17/13=1.307692 ... |
⇒ 307 + 692 = 999 |
70/13=5.384615 ... |
⇒ 384 + 615 = 999 |
18/13=1.384615 ... |
⇒ 384 + 615 = 999 |
71/13=5.461538 ... |
⇒ 461 + 538 = 999 |
19/13=1.461538 ... |
⇒ 461 + 538 = 999 |
72/13=5.538461 ... |
⇒ 538 + 461 = 999 |
20/13=1.538461 ... |
⇒ 538 + 461 = 999 |
73/13=5.615384 ... |
⇒ 615 + 384 = 999 |
21/13=1.615384 ... |
⇒ 615 + 384 = 999 |
74/13=5.692307 ... |
⇒ 692 + 307 = 999 |
22/13=1.692307 ... |
⇒ 692 + 307 = 999 |
... |
... |
|
| |
2.4 Number 14 and 999
All perfect products N x (1/14), with N=natural entirety, generate the Anti-Beast (999),
with 3 specific sums [714 285-142 857-571 428]; except of course for the multiples of 14;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
714 285 ⇒ 7+1+4 = 12 2+8+5=15 12+15=27
⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
571 428 ⇒ 5+7+1=13 4+2+8=14 13+14=27
⇒ 2+7=9
|
1/14=0.0 714285 ... |
⇒ 714+285 = 999 |
29/14=2.0 714285 ... |
⇒ 714+285 = 999 |
2/14=0. 142857 ... |
⇒ 142+857 = 999 |
30/14=2. 142857 ... |
⇒ 142+857 = 999 |
3/14=0.2 142857 ... |
⇒ 142+857 = 999 |
... |
... |
4/14=0. 285714 ... |
⇒ 285+714 = 999 |
100/14=7. 142857 ... |
⇒ 142+857 = 999 |
5/14=0.3 571428 ... |
⇒ 571+428 = 999 |
101/14=7.2 142857 ... |
⇒ 142+857 = 999 |
6/14=0. 428571 ... |
⇒ 428+571 = 999 |
... |
... |
8/14=0. 571428 ... |
⇒ 571+428 = 999 |
1000/14=71. 428571 ... |
⇒ 428+571 = 999 |
9/14=0.6 428571 ... |
⇒ 428+571 = 999 |
... |
... |
10/14=0. 714285 ... |
⇒ 714+285 = 999 |
1111/14=79.3 571428 ... |
⇒ 571+428 = 999 |
11/14=0.7 857142 ... |
⇒ 857+142 = 999 |
... |
... |
... |
... |
111110/14=7936. 428571 ... |
⇒ 428+571 = 999 |
19/14=1.3 571428 ... |
⇒ 571+428 = 999 |
... |
... |
20/14=1. 428571 ... |
⇒ 428+571 = 999 |
1111111/14=79365.0 714285 ... |
⇒ 714+285 = 999 |
... |
... |
... |
... |
|
| |
2.5 Number 22 and 999
All perfect products N x (1/22), with N=natural entirety, generate the Anti-Beast (999),
with 5 specific bi-triplets [454 545 - 090 909 - 363 636 - 181 818 - 272 727]; except of course for the multiples of 22;
the double iterative triplets have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
454 545 ⇒ 4+5+4 = 13 5+4+5=14 13+14=27
⇒ 2+7=9
090 909 ⇒ 0+9+0 = 9 9+0+9=18 9 + 18=27
⇒ 2+7=9
363 636 ⇒ 3+6+3=12 6+3+6=15 12+15=27
⇒ 2+7=9
181 818 ⇒ 1+8+1=10 8+1+8=17 10+17=27
⇒ 2+7=9
272 727 ⇒ 2+7+2=11 7+2+7=16 11+16=27
⇒ 2+7=9
(2 + 3 + 4 + 2 + 5 + 6)4 = 224 = 234 256
|
1/22=0.0 454545 ... |
⇒ 454+545 = 999 |
29/22=1.3 181818 ... |
⇒ 181+818 = 999 |
2/22=0. 090909 ... |
⇒ 090+909 = 999 |
30/22=1. 363636 ... |
⇒ 363+636 = 999 |
3/22=0.1 363636 ... |
⇒ 363+636 = 999 |
... |
... |
4/22=0. 181818 ... |
⇒ 181+818 = 999 |
100/22=4. 545454 ... |
⇒ 545+454 = 999 |
5/22=0.2 272727 ... |
⇒ 272+727 = 999 |
101/22=4.5 909090 ... |
⇒ 909+090 = 999 |
6/22=0. 272727 ... |
⇒ 272+727 = 999 |
... |
... |
7/22=0.3 181818 ... |
⇒ 181+818 = 999 |
1000/22=45. 454545 ... |
⇒ 454+545 = 999 |
8/22=0. 363636 ... |
⇒ 363+636 = 999 |
... |
... |
9/22=0.4 090909 ... |
⇒ 090+909 = 999 |
1110/22=50. 454545 ... |
⇒ 454+545 = 999 |
10/22=0. 454545 ... |
⇒ 454+545 = 999 |
... |
... |
... |
... |
11111/22=505.0 454545 ... |
⇒ 454+545 = 999 |
19/22=0.8 636363 ... |
⇒ 636+363 = 999 |
... |
... |
20/22=0. 909090 ... |
⇒ 909+090 = 999 |
1111111/22=50505.0 454545 ... |
⇒ 454+545 = 999 |
... |
... |
... |
... |
|
| |
2.6 Number 26 and 999
All perfect products N x (1/26), with N=natural entirety, generate the Anti-Beast (999),
with 6 specific bi-triplets [384 615 - 769 230 - 153 846 - 923 076 - 692 307 - 461 538]; except of course for the multiples of 26;
the double iterative triplets have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
384 615 ⇒ 3+8+4 = 15 6+1+5=12 15+12=27
⇒ 2+7=9
769 230 ⇒ 2+3+0 = 5 7+6+9=22 5 + 22=27
⇒ 2+7=9
153 846 ⇒ 1+5+3 = 9 8+4+6=18 9 + 18=27
⇒ 2+7=9
923 076 ⇒ 9+2+3=14 0+7+6=13 14+13=27
⇒ 2+7=9
692 307 ⇒ 6+9+2=17 3+0+7=10 17+10=27
⇒ 2+7=9
461 538 ⇒ 4+6+1=11 5+3+8=16 11+16=27
⇒ 2+7=9
(1 + 7 + 5 + 7 + 6)3 = 263 = 17 576 6 + 5 x 4 = 26 = 6 x 5 - 4
|
1/26=0.0 384615 ... |
⇒ 384+615 = 999 |
29/26=1.1 153846 ... |
⇒ 153+846 = 999 |
2/26=0.0 769230 ... |
⇒ 769+230 = 999 |
30/26=1. 153846 ... |
⇒ 153+846 = 999 |
3/26=0.1 153846 ... |
⇒ 153+846 = 999 |
... |
... |
4/26=0. 153846 ... |
⇒ 153+846 = 999 |
100/26=3. 846153 ... |
⇒ 846+153 = 999 |
5/26=0.1 923076 ... |
⇒ 923+076 = 999 |
101/26=3.8 846153 ... |
⇒ 846+153 = 999 |
6/26=0. 230769 ... |
⇒ 230+769 = 999 |
... |
... |
7/26=0.2 692307 ... |
⇒ 692+307 = 999 |
1000/26=38. 461538 ... |
⇒ 461+538 = 999 |
8/26=0. 307692 ... |
⇒ 307+692 = 999 |
... |
... |
9/26=0.3 461538 ... |
⇒ 461+538 = 999 |
1111/26=42.7 307692 ... |
⇒ 307+692 = 999 |
10/26=0. 384615 ... |
⇒ 384+615 = 999 |
... |
... |
... |
... |
11111/26=427.3 461538 ... |
⇒ 461+538 = 999 |
19/26=0.7 307692 ... |
⇒ 307+692 = 999 |
... |
... |
20/26=0. 769230 ... |
⇒ 769+230 = 999 |
1111111/26=42735.0 384615 ... |
⇒ 384+615 = 999 |
... |
... |
... |
... |
|
| |
2.7 Number 28 and 999
All perfect products N x (1/28), with N=natural entirety, generate the Anti-Beast (999),
with 3 specific sums [714 285-142 857-571 428]; except of course for the multiples of 28;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
714 285 ⇒ 7+1+4 = 12 2+8+5=15 12+15=27
⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
571 428 ⇒ 5+7+1=13 4+2+8=14 13+14=27
⇒ 2+7=9
(1 + 7 + 2 + 1 + 0 + 3 + 6 + 8)5 = 285 = 17 210 368
Number 28 is a perfect number for it is a natural entirety equal to the sum of its own
dividers (1, 2, 4, 7 and 14); in consequence, and according to the observation of Pythagore, this perfect number (the second after number 6 ...) is also the sum of an arithmetic series:
1 + 2 + 4 + 7 + 14 = 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7
|
1/28=0.03 571428 ... |
⇒ 571+428 = 999 |
29/28=1.03 571428 ... |
⇒ 571+428 = 999 |
2/28=0.0 714285 ... |
⇒ 714+285 = 999 |
30/28=1.0 714285 ... |
⇒ 714+285 = 999 |
3/28=0.10 714285 ... |
⇒ 714+285 = 999 |
... |
... |
4/28=0. 142857 ... |
⇒ 142+857 = 999 |
100/28=3.5 714285 ... |
⇒ 714+285 = 999 |
5/28=0.17 857142 ... |
⇒ 857+142 = 999 |
101/28=3.60 714285 ... |
⇒ 714+285 = 999 |
6/28=0.2 142857 ... |
⇒ 142+857 = 999 |
... |
... |
8/28=0. 285714 ... |
⇒ 285+714 = 999 |
1000/28=35. 714285 ... |
⇒ 714+285 = 999 |
9/28=0.32 142857 ... |
⇒ 142+857 = 999 |
... |
... |
10/28=0.3 571428 ... |
⇒ 571+428 = 999 |
1111/28=39.67 857142 ... |
⇒ 857+142 = 999 |
11/28=0.39 285714 ... |
⇒ 285+714 = 999 |
... |
... |
... |
... |
11111/28=396.82 142857 ... |
⇒ 142+857 = 999 |
19/28=0.67 857142 ... |
⇒ 857+142 = 999 |
... |
... |
20/28=0. 714285 ... |
⇒ 714+285 = 999 |
1111111/28=39682.53 571428 ... |
⇒ 571+428 = 999 |
... |
... |
... |
... |
|
| |
2.8 Number 35 and 999
All perfect products N x (1/35), with N=natural entirety, generate the Anti-Beast (999),
with 3 specific sums [714 285-142 857-571 428]; except of course for the multiples of 35;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
714 285 ⇒ 7+1+4 = 12 2+8+5=15 12+15=27
⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
571 428 ⇒ 5+7+1=13 4+2+8=14 13+14=27
⇒ 2+7=9
|
1/35=0.0 285714 ... |
⇒ 285+714 = 999 |
29/35=0.8 285714 ... |
⇒ 285+714 = 999 |
2/35=0.0 571428 ... |
⇒ 571+428 = 999 |
30/35=0. 857142 ... |
⇒ 857+142 = 999 |
3/35=0.0 857142 ... |
⇒ 857+142 = 999 |
... |
... |
4/35=0.1 142857 ... |
⇒ 142+857 = 999 |
100/35=2. 857142 ... |
⇒ 857+142 = 999 |
5/35=0. 142857 ... |
⇒ 142+857 = 999 |
101/35=2.8 857142 ... |
⇒ 857+142 = 999 |
6/35=0.1 714285 ... |
⇒ 714+285 = 999 |
... |
... |
8/35=0.2 285714 ... |
⇒ 285+714 = 999 |
1000/35=28.5 714285 ... |
⇒ 714+285 = 999 |
9/35=0.2 571428 ... |
⇒ 571+428 = 999 |
... |
... |
10/35=0. 285714 ... |
⇒ 285+714 = 999 |
1111/35=31.7 428571 ... |
⇒ 428+571 = 999 |
11/35=0.3 142857 ... |
⇒ 142+857 = 999 |
... |
... |
... |
... |
11111/35=317.4 571428 ... |
⇒ 571+428 = 999 |
19/35=0.5 428571 ... |
⇒ 428+571 = 999 |
... |
... |
20/35=0. 571428 ... |
⇒ 571+428 = 999 |
1111111/35=31746.0 285714 ... |
⇒ 285+714 = 999 |
... |
... |
... |
... |
|
| |
2.9 Number 39 and 999
All perfect products N x (1/39), with N=natural entirety, generate the Anti-Beast (999), with
a dozen specific bi-triplets [025 641 - 051 282 - 102 564 - 128 205 - 256 410 -
512 820 - 769 230 - 153 846 - 179 487 - 743 589 - 897 435]; except of course for the multiples of 39;
the double iterative triplets have a numerical root (sum of the digits) of 18, 27 or 36
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
9 x 2 = 18 = 6 x 3 39 = 13 x 3 [Triple Last Supper ...] 9 x 4 = 36 = 12 x 3
025 641 ⇒ 0+2+5 = 7 6+4+1=11 7 + 11=18
⇒ 1+8=9
051 282 ⇒ 0+5+1 = 6 2+8+2=12 6 + 12=18
⇒ 1+8=9
102 564 ⇒ 1+0+2 = 3 5+6+4=15 3 + 15=18
⇒ 1+8=9
128 205 ⇒ 2+0+5 = 7 1+2+8=11 7 + 11=18
⇒ 1+8=9
256 410 ⇒ 4+1+0 = 5 2+5+6=13 5 + 13=18
⇒ 1+8=9
512 820 ⇒ 5+1+2 = 8 8+2+0=10 8 + 10=18
⇒ 1+8=9
769 230 ⇒ 2+3+0 = 5 7+6+9=22 5 + 22=27
⇒ 2+7=9
153 846 ⇒ 1+5+3 = 9 8+4+6=18 9 + 18=27
⇒ 2+7=9
179 487 ⇒ 1+7+9=17 4+8+7=19 17+19=36
⇒ 3+6=9
743 589 ⇒ 7+4+3=14 5+8+9=22 14+22=36
⇒ 3+6=9
897 435 ⇒ 8+9+7=24 4+3+5=12 24+12=36
⇒ 3+6=9
|
1/39=0. 025641 ... |
⇒ (025+641)x(3/2) = 999 |
29/39=0. 743589 ... |
⇒ (743+589)x(3/4) = 999 |
2/39=0. 051282 ... |
⇒ (051+282)x3 = 999 |
30/39=0. 769230 ... |
⇒ 769+230 = 999 |
3/39=0.0 769230 ... |
⇒ 769+230 = 999 |
... |
... |
4/39=0. 102564 ... |
⇒ (102+564)x(3/2) = 999 |
100/39=2. 564102 ... |
⇒ (564+102)x(3/2) = 999 |
5/39=0. 128205 ... |
⇒ (128+205)x3 = 999 |
101/39=2. 589743 ... |
⇒ (589+743)x(3/4) = 999 |
6/39=0. 153846 ... |
⇒ 153+846 = 999 |
... |
... |
7/39=0. 179487 ... |
⇒ (179+487)x(3/2) = 999 |
1000/39=25. 641025 ... |
⇒ (641+025)x(3/2) = 999 |
8/39=0. 205128 ... |
⇒ (205+128)x3 = 999 |
... |
... |
9/39=0. 230769 ... |
⇒ 230+769 = 999 |
1111/39=28. 487179 ... |
⇒ (487+179)x(3/2) = 999 |
10/39=0. 256410 ... |
⇒ (256+410)x(3/2) = 999 |
... |
... |
... |
... |
11111/39=284. 897435 ... |
⇒ (897+435)x(3/4) = 999 |
19/39=0. 487179 ... |
⇒ (487+179)x(3/2) = 999 |
... |
... |
20/39=0. 512820 ... |
⇒ (512+820)x(3/4) = 999 |
1111111/39=28490. 025641 ... |
⇒ (025+641)x(3/2) = 999 |
... |
... |
... |
... |
|
| |
2.10 Number 42 and 999
All perfect products N x (1/42), with N=natural entirety, generate the Anti-Beast (999),
with five (5) specific sums [714 285 - 142 857 - 095 238 - 476 190 - 952 380]; except of course for the multiples of 42;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
714 285 ⇒ 7+1+4 = 12 2+8+5=15 12+15=27
⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
238 095 ⇒ 2+3+8=13 0+9+5=14 13+14=27
⇒ 2+7=9
476 190 ⇒ 4+7+6=17 1+9+0=10 17+10=27
⇒ 2+7=9
952 380 ⇒ 9+5+2=16 3+8+0=11 16+11=27
⇒ 2+7=9
|
1/42=0.0 238095 ... |
⇒ (238+095)x3 = 999 |
29/42=0.690 476190 ... |
⇒ (476+190)x(3/2) = 999 |
2/42=0.0 476190 ... |
⇒ (476+190)x(3/2) = 999 |
30/42=0. 714285 ... |
⇒ 714+285 = 999 |
3/42=0.0 714285 ... |
⇒ 714+285 = 999 |
... |
... |
4/42=0.0 952380 ... |
⇒ (952+380)x(3/4) = 999 |
100/42=2.38 095238 ... |
⇒ (095+238)x3 = 999 |
5/42=0.1 190476 ... |
⇒ (190+476)x(3/2) = 999 |
101/42=2.40 476190 ... |
⇒ (476+190)x(3/2) = 999 |
6/42=0. 142857 ... |
⇒ 142+857 = 999 |
... |
... |
8/42=0. 190476 ... |
⇒ (190+476)x(3/2) = 999 |
1000/42=23.8 095238 ... |
⇒ (095+238)x3 = 999 |
9/42=0.2 142857 ... |
⇒ 142+857 = 999 |
... |
... |
10/42=0. 238095 ... |
⇒ (238+095)x3 = 999 |
1111/42=26.45 238095 ... |
⇒ (238+095)x3 = 999 |
11/42=0.26 190476 ... |
⇒ (190+476)x(3/2) = 999 |
... |
... |
... |
... |
11111/42=264.5 476190 ... |
⇒ (476+190)x(3/2) = 999 |
19/42=0.45 238095 ... |
⇒ (238+095)x3 = 999 |
... |
... |
20/42=0. 476190 ... |
⇒ (476+190)x(3/2) = 999 |
1111111/42=26455.0 238095 ... |
⇒ (238+095)x3 = 999 |
... |
... |
... |
... |
|
| |
2.11 Number 52 and 999
All perfect products N x (1/52), with N=natural entirety, generate the Anti-Beast (999),
with 6 specific bi-triplets [384 615 - 769 230 - 153 846 - 923 076 - 692 307 - 461 538]; except of course for the multiples of 52;
the double iterative triplets have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
4 x 13 = 52 = 26 x 2
384 615 ⇒ 3+8+4 = 15 6+1+5=12 15+12=27
⇒ 2+7=9
769 230 ⇒ 2+3+0 = 5 7+6+9=22 5 + 22=27
⇒ 2+7=9
153 846 ⇒ 1+5+3 = 9 8+4+6=18 9 + 18=27
⇒ 2+7=9
923 076 ⇒ 9+2+3=14 0+7+6=13 14+13=27
⇒ 2+7=9
692 307 ⇒ 6+9+2=17 3+0+7=10 17+10=27
⇒ 2+7=9
461 538 ⇒ 4+6+1=11 5+3+8=16 11+16=27
⇒ 2+7=9
|
1/52=0.01 923076 ... |
⇒ 923+076 = 999 |
29/52=0.55 769230 ... |
⇒ 769+230 = 999 |
2/52=0.0 384615 ... |
⇒ 384+615 = 999 |
30/52=0.5 769230 ... |
⇒ 769+230 = 999 |
3/52=0.05 769230 ... |
⇒ 769+230 = 999 |
... |
... |
4/52=0.0 769230 ... |
⇒ 769+230 = 999 |
100/52=1. 923076 ... |
⇒ 923+076 = 999 |
5/52=0.09 615384 ... |
⇒ 615+384 = 999 |
101/52=1.94 230769 ... |
⇒ 230+769 = 999 |
6/52=0.1 153846 ... |
⇒ 153+846 = 999 |
... |
... |
7/52=0.134 615384 ... |
⇒ 615+384 = 999 |
1000/52=19. 230769 ... |
⇒ 230+769 = 999 |
8/52=0. 153846 ... |
⇒ 153+846 = 999 |
... |
... |
9/52=0.17 307692 ... |
⇒ 307+692 = 999 |
1111/52=21.36 538461 ... |
⇒ 538+461 = 999 |
10/52=0.19 230769 ... |
⇒ 230+769 = 999 |
... |
... |
... |
... |
11111/52=213.67 307692 ... |
⇒ 307+692 = 999 |
19/52=0.365 384615 ... |
⇒ 384+615 = 999 |
... |
... |
20/52=0.3 846153 ... |
⇒ 846+153 = 999 |
1111111/52=21367.51 923076 ... |
⇒ 923+076 = 999 |
... |
... |
... |
... |
|
| |
2.12 Number 56 and 999
All perfect products N x (1/56), with N=natural entirety, generate the Anti-Beast (999),
with 3 specific sums [714 285-142 857-571 428]; except of course for the multiples of 56;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
714 285 ⇒ 7+1+4 = 12 2+8+5=15 12+15=27
⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
571 428 ⇒ 5+7+1=13 4+2+8=14 13+14=27
⇒ 2+7=9
|
1/56=0.017 857142 ... |
⇒ 857+142 = 999 |
29/56=0.517 857142 ... |
⇒ 857+142 = 999 |
2/56=0.03 571428 ... |
⇒ 571+428 = 999 |
30/56=0.53 571428 ... |
⇒ 571+428 = 999 |
3/56=0.053 571428 ... |
⇒ 571+428 = 999 |
... |
... |
4/56=0.0 714285 ... |
⇒ 714+285 = 999 |
100/56=1.7 857142 ... |
⇒ 857+142 = 999 |
5/56=0.089 285714 ... |
⇒ 285+714 = 999 |
101/56=1.803 571428 ... |
⇒ 571+428 = 999 |
6/56=0.10 714285 ... |
⇒ 714+285 = 999 |
... |
... |
8/56=0. 142857 ... |
⇒ 142+857 = 999 |
1000/56=17. 857142 ... |
⇒ 857+142 = 999 |
9/56=0.160 714285 ... |
⇒ 714+285 = 999 |
... |
... |
10/56=0.17 857142 ... |
⇒ 857+142 = 999 |
1111/56=19.839 285714 ... |
⇒ 285+714 = 999 |
11/56=0.196 428571 ... |
⇒ 428+571 = 999 |
... |
... |
... |
... |
11111/56=198.410 714285 ... |
⇒ 714+285 = 999 |
19/56=0.339 285714 ... |
⇒ 285+714 = 999 |
... |
... |
20/56=0.3 571428 ... |
⇒ 571+428 = 999 |
1111111/56=19841.267 857142 ... |
⇒ 857+142 = 999 |
... |
... |
... |
... |
|
| |
2.13 Number 63 and 999
All perfect products N x (1/63), with N=natural entirety, generate the Anti-Beasts (999, 888, 777),
with a dozen specific bi-triplets [142 857-476 190-952 380-158 730
-634 920 -301 587-682 539 -317 460
-793 650 -126 984-174 603-365 079]; except of course for the multiples of 63;
the double iterative triplets have ultimate numerical roots (sum of the digits) of 9, 6 and 3.
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
142 857 ⇒ 1+4+2 = 7 8+5+7=20 7 + 20=27
⇒ 2+7=9
476 190 ⇒ 4+7+6=17 1+9+0=10 17+10=27
⇒ 2+7=9
952 380 ⇒ 9+5+2=16 3+8+0=11 16+11=27
⇒ 2+7=9
158 730 ⇒ 1+5+8=14 7+3+0=10 14+10=24
⇒ 2+4=6
634 920 ⇒ 6+3+4=13 9+2+0=11 13+11=24
⇒ 2+4=6
301 587 ⇒ 3+0+1 = 4 5+8+7=20 4 + 20=24
⇒ 2+4=6
682 539 ⇒ 6+8+2=16 5+3+9=17 16+17=33
⇒ 3+3=6
317 460 ⇒ 3+1+7=11 4+6+0=10 11+10=21
⇒ 2+1=3
793 650 ⇒ 7+9+3=19 6+5+0=11 19+11=30
⇒ 3+0=3
126 984 ⇒ 1+2+6 = 9 9+8+4=21 9 + 21=30
⇒ 3+0=3
174 603 ⇒ 6+0+3 = 9 1+7+4=12 9 + 12=21
⇒ 2+1=3
365 079 ⇒ 3+6+5=14 0+7+9=16 14+16=30
⇒ 3+0=3
62 + 33 = 63 = 36 + 27 (2+4+8+1+5+5+7+8+0+2+6+7+5+2+1)8 = 638 = 248 155 780 267 521
43= 64 =(4 x 4)2 2 x 2(3+2) = 64 = 2 x 32 62 + 2 = 64 = (6 + 2)2 44 ÷ 4 = 64 = 256 ÷ 4
|
1/63=0.0 158730 ... |
⇒ 158+730 = 888 |
29/63=0. 460317 ... |
⇒ 460+317 = 777 |
2/63=0.0 317460 ... |
⇒ 317+460 = 777 |
30/63=0. 476190 ... |
⇒ (476+190)x(3/2)=999 |
3/63=0.0 476190 ... |
⇒ (476+190)x(3/2)=999 |
... |
... |
4/63=0.0 634920 ... |
⇒ (634+920)x(9/14)=999 |
100/63=1. 587301 ... |
⇒ 587+301 = 888 |
5/63=0.0 793650 ... |
⇒ (793+650)x(9/13)=999 |
101/63=1. 603174 ... |
⇒ 603+174 = 777 |
6/63=0.0 952380 ... |
⇒ (952+380)x(3/4)=999 |
... |
... |
8/63=0. 126984 ... |
⇒ (126+984)x(9/10)=999 |
1000/63=15.87 301587 ... |
⇒ 301+587 = 888 |
9/63=0. 142857 ... |
⇒ 142+857 = 999 |
... |
... |
10/63=0. 158730 ... |
⇒ 158+730 = 888 |
1111/63=19.839 285714 ... |
⇒ 285+714 = 999 |
11/63=0. 174603 ... |
⇒ 174+603 = 777 |
... |
... |
... |
... |
11111/63=176. 365079 ... |
⇒ (365+079)x2=888 |
19/63=0. 301587 ... |
⇒ 301+587 = 888 |
... |
... |
20/63=0. 317460 ... |
⇒ 317+460 = 777 |
1111111/63=17636. 682539 ... |
⇒ (682+539)x(9/11)=999 |
... |
... |
... |
... |
|
| |
2.14 Number 65 and 999
All perfect products N x (1/65), with N=natural entirety, generate the Anti-Beast (999),
with five (5) specific bi-triplets [153 846 - 307 692 - 615 384 - 769 230 - 923 076]; except of course for the multiples of 65;
with double iterative triplets which have all a numerical root (sum of the digits) of 27
65 = 13 x 5 27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9
153 846 ⇒ 1+5+3 = 9 8+4+6=18 9 + 18=27
⇒ 2+7=9
307 692 ⇒ 3+0+7 = 10 6+9+2=17 10+17=27
⇒ 2+7=9
615 384 ⇒ 6+1+5=12 3+8+4=15 12+15=27
⇒ 2+7=9
769 230 ⇒ 2+3+0 = 5 7+6+9=22 5 + 22=27
⇒ 2+7=9
923 076 ⇒ 9+2+3=14 0+7+6=13 14+13=27
⇒ 2+7=9
|
1/65=0.0 153846 ... |
⇒ 153+846 = 999 |
29/65=0.44 615384 ... |
⇒ 615+384 = 999 |
2/65=0.0 307692 ... |
⇒ 307+692 = 999 |
30/65=0.4 615384 ... |
⇒ 615+384 = 999 |
3/65=0.04 615384 ... |
⇒ 615+384 = 999 |
... |
... |
4/65=0.0 615384 ... |
⇒ 615+384 = 999 |
100/65=1.53 846153 ... |
⇒ 846+153 = 999 |
5/65=0.0 769230 ... |
⇒ 769+230 = 999 |
101/65=1.55 384615 ... |
⇒ 384+615 = 999 |
6/65=0.0 923076 ... |
⇒ 923+076 = 999 |
... |
... |
7/65=0.10 769230 ... |
⇒ 769+230 = 999 |
1000/65=15. 384615 ... |
⇒ 384+615 = 999 |
8/65=0.12 307692 ... |
⇒ 307+692 = 999 |
... |
... |
9/65=0.13 846153 ... |
⇒ 846+153 = 999 |
1111/65=17.0 923076 ... |
⇒ 923+076 = 999 |
10/65=0. 153846 ... |
⇒ 153+846 = 999 |
... |
... |
... |
... |
11111/65=170.9 384615 ... |
⇒ 384+615 = 999 |
19/65=0.2 923076 ... |
⇒ 923+076 = 999 |
... |
... |
20/65=0. 307692 ... |
⇒ 307+692 = 999 |
1111111/65=17094.0 153846 ... |
⇒ 153+846 = 999 |
... |
... |
... |
... |
|
| |
2.15 Number 91 and 999
All perfect products N x (1/91), with N=natural entirety, generate the Anti-Beast (999),
with double iterative triplets which have all a numerical root (sum of the digits) of 27
27 = 9 x 3 [Triple 9; 999] ⇒ 2+7=9 92 + 32 + 12 = 91 = 7 x 13
|
1/91=0.0109890 ... |
⇒ 109+890 = 999 |
29/91=0.318681 ... |
⇒ 318+681 = 999 |
2/91=0.0219780 ... |
⇒ 219+780 = 999 |
30/91=0.329670 ... |
⇒ 329+670 = 999 |
3/91=0.329670 ... |
⇒ 329+670 = 999 |
... |
... |
4/91=0.0439560 ... |
⇒ 439+560 = 999 |
100/91=1.0989010 ... |
⇒ 989+010 = 999 |
5/91=0.0549450 ... |
⇒ 549+450 = 999 |
101/91=1.109890 ... |
⇒ 109+890 = 999 |
6/91=0.0659340 ... |
⇒ 659+340 = 999 |
... |
... |
8/91=0.0879120 ... |
⇒ 879+120 = 999 |
1000/91=10.989010 ... |
⇒ 989+010 = 999 |
9/91=0.0989010 ... |
⇒ 989+010 = 999 |
... |
... |
10/91=0.109890 ... |
⇒ 109+890 = 999 |
1111/91=12.208791 ... |
⇒ 208+791 = 999 |
11/91=0.120879 ... |
⇒ 120+879 = 999 |
... |
... |
... |
... |
11111/91=122.0989010 ... |
⇒ 989+010 = 999 |
19/91=0.208791 ... |
⇒ 208+791 = 999 |
... |
... |
20/91=0.219780 ... |
⇒ 219+780 = 999 |
1111111/91=12210.0109890 ... |
⇒ 109+890 = 999 |
... | ... | ... | ... |
|
| |
2.16 Number 1998 and 999
The hinge-year 1998 is related as well to the Beast (666) as with the Anti-Beast (999):
In the direct mode of numerical encoding basis 3, "Nineteen Ninety Eight" (year 1998) has an alphanumeric value of 666; whereas the French expression "Mille neuf cents quatre-vingt dix-huit" (for year "Nineteen Ninety Eight") is worth 1221 [1221x(6/11) = 666]
N | i | n | e | t | e | e | n | | N | i | n | e | t | y | | E | i | g | h | t | = | 666 |
42 |
+27 |
+42 |
+15 |
+60 |
+15 |
+15 |
+42 |
|
+42 |
+27 |
+42 |
+15 |
+60 |
+75 |
|
+15 |
+27 |
+21 |
+24 |
+60 |
Nineteen Ninety Eight = 1998 ... Mystical Year!
1998÷ 3 = 666 1998÷ 2 = 999
NOTE: In the encoding on basis 9, "Nineteen Ninety Eight" has an alphanumeric value of 1998!
|
M |
i |
l |
l |
e |
|
n |
e |
u |
f |
|
c |
e |
n |
t |
s |
|
q |
u |
a |
t |
r |
e |
- |
v |
i |
n |
g |
t |
|
d |
i |
x |
- |
h |
u |
i |
t |
= |
1221
(6/11)x1221=666
(9/11)x1221=999
|
39 |
27 |
36 |
36 |
15 |
|
42 |
15 |
63 |
18 |
|
9 |
15 |
42 |
60 |
57 |
|
51 |
63 |
3 |
60 |
54 |
15 |
|
66 |
27 |
42 |
21 |
60 |
|
12 |
27 |
72 |
|
24 |
63 |
27 |
60 |
1998: Mystical year!!! ... as well in English as in French.
Let us note here that the year 1998 comprised the potential annual maximum of three Fridays 13 (in February, March and November).
|
Number 1998 is equal to the cumulative sum of its digits and their cubes | 1 + 9 + 9 + 8 + 13 + 93 + 93 + 83 = 1998 |
9 + 9 + 90 + 90 + 900 + 900 = 1998 1 + 8 = 9
6 + 6 + 60 + 60 + 600 + 600 = 1332 1 + 2 = 3
| 9 + 90 + 900 = 999 = 1992 ÷ 2 |
6+ 60 + 600 = 666 = 1332 ÷ 2 |
18 x 111 = 1998 = 6 x 333 |
111 x 3 x 3 x 2 = 1998 = 2 x 3 x 333 |
92 = 81 ⇒ 8 + 1 = 9 = 1! + 2! + 3! |
111 111 111 9 times the unit |
x |
1 111 111 111 10 times the unit |
= |
123456789987654321
Splendid palindromic number
|
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 ⇒ 3 + 6 = 9
9 x 10 = 90 ⇒ 9 + 0 = 9
|
1 111 111 111 10 times the unit |
x |
1 111 111 111 10 times the unit |
= |
12345678900987654321
Remarkable palindromic number
|
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 ⇒ 4 + 5 = 9
(8 + 1)2 = 92 = 81 ⇒ 8 + 1 = 9 = √81
|
All rights reserved666: Bivalent Myth
|
|